Bagging Predictors By Leo Breiman
نویسنده
چکیده
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and simulated data sets using classi cation and regression trees and subset selection in linear regression show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause signi cant changes in the predictor constructed, then bagging can improve accuracy.
منابع مشابه
Bagging Predictors Bagging Predictors
Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions when predicting a numerical outcome and does a plurality vote when predicting a class. The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests on real and ...
متن کاملBagging by Design (on the Suboptimality of Bagging)
Bagging (Breiman 1996) and its variants is one of the most popular methods in aggregating classifiers and regressors. Originally, its analysis assumed that the bootstraps are built from an unlimited, independent source of samples, therefore we call this form of bagging ideal-bagging. However in the real world, base predictors are trained on data subsampled from a limited number of training samp...
متن کاملBias , Variance , and Arcing Classifiers
Recent work has shown that combining multiple versions of unstable classifiers such as trees or neural nets results in reduced test set error. To study this, the concepts of bias and variance of a classifier are defined. Unstable classifiers can have universally low bias. Their problem is high variance. Combining multiple versions is a variance reducing device. One of the most effective is bagg...
متن کاملClassification and Regression by randomForest
Recently there has been a lot of interest in “ensemble learning” — methods that generate many classifiers and aggregate their results. Two well-known methods are boosting (see, e.g., Shapire et al., 1998) and bagging Breiman (1996) of classification trees. In boosting, successive trees give extra weight to points incorrectly predicted by earlier predictors. In the end, a weighted vote is taken ...
متن کاملipred : Improved Predictors
In classification problems, there are several attempts to create rules which assign future observations to certain classes. Common methods are for example linear discriminant analysis or classification trees. Recent developments lead to substantial reduction of misclassification error in many applications. Bootstrap aggregation (“bagging”, Breiman, 1996a) combines classifiers trained on bootstr...
متن کامل